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ey ABSTRACT
For mény multivariate hypotheses, under the normality assump-
ions, the likelihood ratio tests are optimal in the sense of
.aving maximal exact slopeé. The exact'disfributiéné neéded for
implementing these tests are complex and their tabulation is
limited in scope and accessibility. In this paper, a method of
constructing normal approximations to these distributions is
described, and illustrated using the problems of testing sphericity
and independence between two sets of variates. The normal approxi-

mations are compared with well known competing approximations and

are seen to fare well.
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1. INTRODUCTION

For most testing of hypothesis problems in multivariate anal-
ysis, under the normality assumption, several reasonable solutions
of comparable merit exist. These include the tests resulting from
the union-intersection principle, the class of likelihood ratio
criteria and adhoc statistics such as Bartlett-Pillai trace for
MANOVA. The Neyman-Pearson theory provides some information on
the operating characteristics of these procedures, but does not
indicate any of the contenders as superior. However, as demon-
strated by Hsieh (1979), the likelihood ratio tests for many of the
multivariate hyéotheses ﬁ#vé ﬁaiimal exact slopes,-i.;.,vthey are
asymptotically optimal according to Bahadur's (1967) m;thod of
comparing tests. From a practical standpoint the null distri-
butions of the likelihood ratio statistics or of their competitors,
are of ciucial importance. These distributions, where available,
are complex, their tables are generally limited in scope and not
often accessible. Moreover, the tabulations concern only selected
percentiles and are inadequate for computing the p-values needed
in practice. The pragmatic approach to such distribution problems
from early days (e.g., Neyman and Pearson, 1931) is to seek reason-
ably accurate and convenient approximations to the distributions.

The principal methods of approximating a likelihood ratio use
the fact that, in large samples, its distribution is approximately
of Pearson type I form and that of its negative logarithm is of
type III, i{.e., chi-square, form. Nayer (1936) following a sug-

gestion by Neyman and Pearson (1931) used the moments to approxi-
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mate the percentiles for testing the homogeneity of variances in

this manner. Bishop (1939), on the other hand, obtained empirical
expressions for the parameters for a type I approximation by pass-
ing the intermedigte stage of computing the moments. Bartlett

(1937) pursuing the asymptotic chi-square character of a negative
multiple of loglikelihood ratio, pointed out by Neyman and Pearson
(1931), used moments to approximate it by a scaled chi-square
variable for samples of moderate size. This approximation deteri-
orates as the size of the problem, as measured by the dimension of
the multivariate normal distribution or by the number of populations
in therﬁroblem increases, of whgn tﬁé-effective samﬁle size is smali.
A comprehensive investigation of various approximations was con- !
ducted by Box (1949), in which he introduced new widely known and
used asymtotic chi-square series approximations for the distribu~
tions of likelihood ratios. Box studied his series approximations,
in the context of two multivariate problems, comparing them with
the exact distributions and with séveral other approximations
including one based on the F-distribution.

The purpose of this essay is to describe a method for con-
structing a Gaussian approximation to the null distribution of the
likelihood ratio, and to demonstrate its efficacy and relevance in
testing multivariate hypotheses. The normal approximation is out-
l1ined in Section 2. It is 1llustrated using two common multi-
variate problems, namely testing independence of two sets of
variates and testing the sphericity hypotheses. Section 3 con-

tains the likelihood ratio statistics for the two problems together
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with current approximations for their null distributions. These
approximations are then numerically compared with the new normal
approximation in Section 4.

2. A NORMAL APPROXIMATION
FOR THE LIKELIHOOD RATIO A

Let Yl, Yz, cees Yn be a sequence of asymptotically normally
distributed nonnegative random variables. The convergence of the
distribution of Yn to normality can be accelerated by approximately
symmetrizing it Qith a transformation as follows:

Let K, = Kr(n), r=1, 2, ..., denote the cumulants of Y = Yn
and suppose that Kl*m and Kf/Kl - ¢r’ r > 2, are bounded as n+x, ‘4

Then using the Taylor series it is easy to obtain the following

asymptotic expansion for the expectation E(Y/Kl)h of a power of Y

as
' h(h-13¢,  p(h-1)(h-2)
u,¢h) = 1 + + {4¢
1 2K1 24‘(% 3
+ 3(h-3)¢§} + o(nI3). (1)

From this the r'® moment of (Y/Kl)h can be obtained by substitut-

ing (rh) for h in (1). .The following central moments of (Y/Kl)h

are then obtained in a routine manner: ;
nZs 2
y(h) = ——2 + BABD (o4 4 (3n-5)92) + 0(e]Y, (2)
1 2K1
h3 2 -3
uy(h) = -5{¢3 + 3(h-1)¢5) + 0(k,7), (3)
K
1 4,2
3h 9, -3
ul‘(h) - —-—K—z—— + O(Kl ).

1
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Since Y is asymptotically normally distributed as n*®, by the Mann-
Wald (1943) theorem so 1is an appropriately normalized (Y/Kl)h.
This convergence to normality is accelerated 1if h 18 chosen so that
the leading term in the expansion (3) for u3(h) vanishes. This
value ho of h which approximately symmetrizes (Y/Kl)h is obtained
from (3) as

h =1 - K1K3/(3K§).

h
The distribution of (Y/Kl) ° may be approximated by the normal dis-

]
tribution with mean ul(ho) and variance uz(ho) given in (1) and (2),

respectively. That is,

~

h ' .
Pr(Y < y) = o[{(y/ky) ® - u(b )Mo )], (4)

where cz(ho) = uz(ho) is given by (2).
It is well known, e.g., see Anderson (1958) or Srivastava and
Khatri (1979), that for many likelihood ratio statistics A appear-

ing in multivariate analysis under the normality assumption,

2/N

U = A is distributed as a product IIXi of independent beta var-

iates X i=1, 2, ... k, distributed according to B(xi; a;, bi)’

i’
where N 1is the number of observations. Equivalently, we have

k
-log U = T (-log xi) in distribution. Now, it can be shown that,
i=1

as ai and bi i

is possible to construct a normal approximation for U as described

4o, -~-log X, converges in law to normality. Hence, it

above. Towards this end we need the cumulants of -log X The

4"
moment generating function of -log X; 1is easily seen to be M(t) =

B(ai-t’bi)/B(ai’bi)' Hence, the cumulant generating function is




K(t) = 1og(F(a1+bi)/P(ai)} - 1og{P(ai+b1-t)/F(ai-t)}.

Differentiating and using ¥Y(2) = é% log I'(z), the rth cunulant of
-log X1 is
c, = (LTYE Dy - v D ),
But w'(z) = - I (z+j)'1, giving
j=0
m-1 -r - -r -r
Cri = (r-1)![ Z (ai+j) 4+ I f(ai+j) - (ai+j+v) 11, (5)
J=0 j=m

where m denotes the largest integer in bi and v = b1 - m. The
cumulants of ~log U' obtained using (5, are,
k m-1

K (U') = (e~1)![ T T (a,+i)
r 1=1 4=0 1

r

k L)
+ & I {(ai+j)_r - (ai+j+v)-r}]. (6)
i=1 j=m

If bi is an integer then the second sum in (6) vanishes and

k m-1 - 1
. K (U') = (z-1)! T T (a +) 7. (7) .
; i-1 j=0

From (7) we observe that as either k or b1 or both -+, Kl diverges,

but Kos T > 1, are bounded. That is, ¢r = Kr/Kl+0. Hence, it is

R possible to construct the normal approximation to the distribution
' of A as described above. Thus, from (4) we get
ho '
~ ' -
Pr(A > A) = o[{(2 /%) ul(ho)}/o(ho)]. (8)

; where A' = - 2(log A)/N. The 100(1-&)th percentile Al-a can be
.: approximated as

; . ' 1/n

f Ay = K lza0(m) + uy(h )] , (9

i S A
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where Za denotes the 1000.th

percentile of the standard normal
variate.
3. TWO APPLICATIONS IN MULTIVARIATE ANALYSIS
The normal approximation derived in the previous section is
now 1llustrated and later examined in the context of the multi-

variate problems of testing independence between two sets of nor-

mal variates and testing the sphericity hypothesis.

3.1 Independence Between Two Sets. Llet X' = (Xl, Xz, cess

Xp ) and Z' - (Yl, Yz, ooy sz), Py < Pys Py +p, = p, be jointly
1

normally distributed with Var(g) = T Var(Y) = 22 and Cov(X,Y)

11’ 2
- 812. The hypothesis of independence between X and Y is H°:212

= 0. If S is the usual estimate of L based on a sample of sgsize N,
then the likelihood ratio statistic for testing Ho is

A - [lsl/(lsnllszzl)]“/z.

where S and 522 are the submatrices of S corresponding to le

11

and Z respectively. The exact distribution of the statistic A

22’
is given, and tabulated for some values of Py and Py by several
authors (e.g., see Krishnaiah 1979 and Consul 1967a). Among var-
ious approximations proposed for the null distribution of A two
are well known and widely used in statistical packages such as
BMDP (see Engelman, et al., 1977). These are (1) the chi-square
series approximation due to Box (1949) and (ii) the F approxi-
mation due to Rao (1948).

Box~Approximation. Let w = P;Py, m = N - (p1+p2+3)/2,
2

2

2, 2 2 4 4 2
Y, = wip +p,-5)/48, v, = v5/2 + w{3(p +p,) + 10v° - 50(p;+py)




+ 159}/1920. Then,

Pr(-m log U < z)

1t

Pr(x: < z) + Yz{Pr(x:+4 < z) - Pr(x: < z)}/m2

+ [Yé{Pr(xas < z) - Pr(x; < 2)} - vﬁ{mxf,” < 2)

2
w
Pr(x2 < 2)}1/2* + o(x”%), (10)
where xi denotes a chi-square variable with k degrees of freedom

and U = AZ/N.

Rao-Approximation. Let m' = N - (p1+p2+3)/2, L = (plp2 - 2)/4,

s = /{(pipg - 4)/(pi+p§ - 5)}. Then,

Q= 's - 2001 - v/S) (o p 05y, (1)

has an F-distribution with PP, and m's - 2L degrees of freedom.

Now, it is well known that (e.g., see Anderson, 1958, p. 236)
under Ho the likelihood ratio statistic A satisfies the equivalence
AZ/N = = Hxi in law, where Xi(i = 1, 2, ooy p2) are indepen-
dently distributed according to beta distributions B{xi; (N - P,
- 1)/2, p1/2}. The normal approximation developed in the previous
section can be specialized in this case by taking k = P,s 2, =
(N - Py - i)/2, bi = p1/2 in the expressions (6) for the cumulants,
(8) for the probabilities, and (9) for the percentiles of A.

3.2 Testing the Sphericity Hypothesis. Let §1, 52, ceay §N

be a random sample from a p-variate normal population with mean
U and covariance matrix Z. The hypothesis that the p components
of the random vector X are independent with the same variance i.e.,

2 2

HO:E = g Ip’ 6° > 0 unknown, is known as the sphericity hypothesis.

The hypothesis also arises in the analysis of data from experiments
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congsisting of repeated measurements. In these experiments, the
measurements on a subject are assumed to have compound symmetry,
i.e., have the same variances and same correlations. The problem
of testing the hypothesis of compound symmetry HO:Z = Uz(pI +
(1-p)I) for the covariance structure of (p+l) repeated measure-
ments Y can be reduced to the sphericity hypothesis by an ortho-
gonal transformation z'+§'(}//(p+1):T1) where 1 is the vector of

1's. Y satisfies compound symmetry i} and only 1if § = T.Y satis-

1
fies the sphericity hypothesis. The likelihood ratio criterion

for the sphericity hypothesis was proposed by Mauchly (1940) as

v -2/¥. [s|{(ers)/p}~P, .

where S is the covariance matrix of the sample of size N. He

also derived its null distribution for p = 2. The exact null dis-
tribution of U for p = 3, 4 and 6 was obtained by Consul (1967b).
The 5% and 12 points for p = 4(1)10 were given by Nagarsanker and
Pillat (1973). The series approximation due to Box can be
expressed in this case as follows.

Box-Approximation. Let e = p(p+1)/2 - 1, £ = n - (2p2 + p+2)

/(6p) and g = (p+2)(P-1)(p-2)(2p3+6p2+3p+2)/(288p2) for n = N-1.

Then,

1"

Pr(- £ log U < z) Pr(xg < z) + ngr(x§+a < z)

- Pr(xi 2)}/£2 + oe”3). (12)

IA

It i3 well known (e.g. see Srivastava and Khatri, 1979) that
the distribution of U under Ho i1s the same as that of the product

nxi, where x1 (1 =1, 2, ..., p=-1) are independent beta random




variables distributed according to B{xi; (n-1)/2, 1(p+2)/(2p)},
n=0N-1, Again, we can obtain the cumulants of U' =
-~ 2(log U)/N using (6) with a

= (n-1)/2, b, = 1(p+2)/(2p) and

i i
k = p -1, Hence, the probabilities and the percentiles of the
likelihood ratio A may be obtained from (8) and (9), respectively.
4., NUMERICAL COMPARISONS
The quality of the normal approximations for the two multi-
variate likelihood ratio statistics discussed in the previous

section and the other two approximations, w-s examined by comput~

ing the probabilities corresponding to the tabulated percentiles

>of the statistics. Thus, in fhe case of the null distribution of

A for testing independence, the approximations due to Box (10),
due to Rao (11), and the normal approximation given in Section
(3.1) were used to compute the probabilities corresponding to all
52 and 1% points of A given in Pearson and Hartley (1972, p. 99
and 333)., Similarly, in case of the sphericity problem, all per-
centiles given by Nagarsanker and Pillai (1973) were used to
examine the approximation due to Box given by (12) and the relevant
normal approximation. ’In both cases, the series approximation due
to Box was used in two steps: 1) only the first term; and 2) all
terms given in (10) and (12). Also the percentiles approximated
using the normal approximations were compared with the competing
approximations using the first term of the Box series and the F-
approximation. A selection of errors, i.e., (Approximation -

Exact value)xlos, in various cases is presented in Tables 1 and 2.

».

_f( . e e
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Conclusions. Let New, Rao, Box 1 and Box 3 denote the nor-

mal approximation, the F-approximation due to Rao, the first term
approximation due to Box and the three term approximation due to
Box, respectively. From Tables 1 and 2 it may be observed that
(i) Rao, Box 1 and Box 3 have errors in second through fifth
decimal place, they are especially large for small N and decreas-
ing rapidly as N increases. The normal approximation has errors
in fourth ér fifth decimal place. (ii) As Py» Py OT P increases,
errors due to Rao, Box 1 and Box 3 increase while those due to the
normal approximation either decrease or maintain the same lgvel.
Overall, the normal approximatioﬁris superior for small N and is

comparable with the others when the N is large.
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TABLE 1. Errors of the Approximations for the Likelihood Ratio Statistic
for Testing Independence Between Two Sets

a=,05
Pl P2 N A ERRORS*
PERCENTILES PROBABILITIES
NEW RAO BoXx1l NEW RAO BOX1 BOX3
3 8 12 0.00001 0 0 67 =19 =1537 =4991 -4744
8 19 0.04107 4 7 698 -17 =24 -1776 -50
22 30 0.00107 (¢] 1 356 0 -143 -4936 -3893
22 37 0.01620 0 0 760 -4 0 -3842 725
5 8 18 0.00217 0 5 161 2 =218 -3340 =485
8 25 0.03411 1 3 352 -8 =17 -1355 -16
T 16 26 0.00019 0 0 50 12 -420 <4759 -2732
16 33 0.00568 0 1 213 -6 =48 -3160 -316
7 8 19 0.00021 0 1 37 -9 -618 -4225 -1437
8 23 0.00356 0 3 133 -3 -122 -2657 -199
10 21 0.00007 0 0 18 25 =746 -4531 -2059
10 25 0.00157 0 2 81 9 -155 -3153 -358
a= .01 o _
3 8 12 0.00000 0 0 17 6 =478 -999 -997
8 19 0.02261 0 7 514 0 -9 =487 -29
22 30 0.00043 0 0 209 0 =44 =997 -935
22 37 0.00990 -2 =1 572 6 5 =872 -303
5 8 18 0.00085 0 3 85 3 -72 -803 =223
8 25 0.02086 0 6 270 -2 =11 =374 -15 T
16 26 0.00007 (4] 0 25 =10 -143 -985 -784
16 33 0.00327 0 0 147 3 -11 =753 -147
7 8 19 0.00007 0 0 16 1 <192 -932 -513
8 23 0.00174 0 2 81 -1 -42 -665 -102
10 21 0.00002 0 0 8 3 =234 -965 -659
10 25 0.00075 0 1 48 5 ~-48 =756 -164

TABLE 2. Errors of Approximations for the Likelihood Ratio Statistic for

- Testing Sphericity
o= .05 a = .01 i
‘ PN A ERRORS* ERRORS*
PERC. PROB. A PERC. PROB.
NEW BOX1 NEW BOX1 BOX2 NEW BOX1 NEW BOX1 BOX2 1
! 4 10 0.09739 16 467 =21 -539 =57 0.05010 -22 382 10 =173 =25 B
i 15 0.25350 35 236 =29 =190 -10 0.17210 -~-41 267 9 -62 -4
+ 20 0.37720 43 120 -33 -97 -5 0.28670 =44 166 8§ =31 -1 1
o 30 0.53900 46 37 -38 -40 -2 0.45310 -38 76 7 =12 0
g 5 10 0.03110 1 444 -7 -1171 -236 0.01361 -5 281 7 =350 -96
* 15 0.13780 7 334 -10 -393 -29 0.08685 -19 287 7 <124 -14
: 20 0.24820 17 201 -17 -194 -7 0.17970 -23 188 6 =63 -5
? 30 0.41640 28 79 =27 -78 -2 0.34020 -29 58 6 =23 0
; 7 10 0.00094 0 104 20 -3352 -1789 0.00025 0 43 2 -822 -566
[¥ - 15 0.02712 0 297 -4 -1158 -228 0.01444 -3 207 4 =330 -86
4 20 0.08446 5 282 -12 =562 -~63 0.05514 -5 234 3 =165 =24
‘ 30 0.21780 15 163 -21 -216 -13 0.16770 -4 153 1 =65 -5

» ' . *Error in prob. = (Approx. value - a)xlO5 and in perc. (Approx. value - A)x10°.
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